Rebuilding our Climate Center after the volcano eruption

  • Richmond Vale Academy - March 2021

    Richmond Vale Academy - March 2021

  • Richmond Vale Academy April 2021 - After the Eruption

    Richmond Vale Academy April 2021 - After the Eruption

  • Compost production system

    Compost production system

  • Green Houses

    Green Houses

  • Nursery

    Nursery

  • Rainwater harvesting system

    Rainwater harvesting system

  • Passion Fruit Fields

    Passion Fruit Fields

  • Pig Pens with Solar pump for water

    Pig Pens with Solar pump for water

  • Horse Shelters

    Horse Shelters

  • Egg Production

    Egg Production

  • Free Range Chicken Pasture

    Free Range Chicken Pasture

  • Banana Fields

    Banana Fields

  • Workshop and Classroom Building

    Workshop and Classroom Building

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Terraces

    Terraces

  • Gym

    Gym

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Drains clogged with ash

    Drains clogged with ash

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovering the solar system

    Recovering the solar system

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Photo from February 2021 - We will recover

    Photo from February 2021 - We will recover

  • Richmond Vale Academy - March 2021
  • Richmond Vale Academy April 2021 - After the Eruption
  • Compost production system
  • Green Houses
  • Nursery
  • Rainwater harvesting system
  • Passion Fruit Fields
  • Pig Pens with Solar pump for water
  • Horse Shelters
  • Egg Production
  • Free Range Chicken Pasture
  • Banana Fields
  • Workshop and Classroom Building
  • Recovery efforts are ongoing
  • Terraces
  • Gym
  • Recovery efforts are ongoing
  • Drains clogged with ash
  • Recovery efforts are ongoing
  • Recovering the solar system
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Photo from February 2021 - We will recover

The RVA Climate Center has been severely affected by the volcanic eruptions in April 2021. The damages are devastating and the recovery process is currently estimated to two years.

The RVA Climate Center includes; Solar Energy, Bio Gas, Ecological Model Farm and Rain Water Harvesting

solar panels

Solar panels

RVA decided to have an off grid photovoltaic solar system in order to be self sufficient at all times and to remain operational in the event of a central system electricity failure due to climate change related or other disasters.

The Academy can produce (17.5 kW x 4 hours =) 70 kWh and its using about 60 kWh per day on light, pumping water and to keep food refrigerated.

A 17.5 kW system has been installed with 70 solar panels and a battery bank of 120 batteries (which can hold about 156 kWh of energy). This means that the system can produce 17.5 kW per hour, if the sun shines with all its power for one hour. However, batteries are needed because the sun doesn’t shine all day long; some hours during the day it only shines 50%, due to clouds the time of the day or year. Some hours it only shines 10%. On average the sun only shines about 4 hours with full power per day.

Solar water heaters

Less than 3% of the energy in the Caribbean comes from renewable sources. e main obstacle preventing people converting to renewable energy is nancing. In St. Vincent, there is a company that gives credit which made it economically viable for RVA to invest in solar water heaters - thus reducing its energy bill and carbon footprint.
Water heating accounts for up to 25% of the energy used in a typical household in the Caribbean.

There are 6 solar water heaters at RVA, the kitchen and most of the bathrooms have hot water sourced from solar energy. A solar water heater works with room temperature water that flows from the water tank to the solar collector.

At the collector, it is heated up and then returned to the hot water tank. Hot water is then drawn on demand from the tank to the showers and sinks at the kitchen and showers.

 Album: Solar Panels

  • solar
  • -solar-panel-rva
  • fullsizeoutput 4b
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 4b
  • -solar-panel-rva
  • -solar-panel-rva
  • solar
  • -solar-panel-rva
  • -solar-panel-rva
  • solar
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 89e
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 89e
  • solar
  • -solar-panel-rva
  • fullsizeoutput 4b
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 4b
  • -solar-panel-rva
  • -solar-panel-rva
  • solar
  • -solar-panel-rva
  • -solar-panel-rva
  • solar
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 89e
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 89e

 

Bio Gas

front bio

Burning fossil fuels pollute the atmosphere, which leads to Global Warming and Climate Change. A way of climate change mitigation is to use renewable energy sources. There are several renewable energy sources: solar energy, wind energy, different thermal and hydro sources of energy and biogas.

Biogas is distinct from other renewable energy sources because of its characteristics of using, controlling and collecting organic waste and at the same time producing fertilizer as a by-product. Biogas does not have any geographical limitations nor does it require advanced technology for producing energy and at the same time it is very simple to use and apply.

In St. Vincent we are to a large extent dependent on fossil fuels and certainly when it comes to cooking gas. Charcoal is also used for cooking, which requires cutting down trees. Deforestation leads to a decrease in the fertility of land by soil erosion, among other negative environmental impacts. Using firewood as energy is also harmful for the health because of the smoke and the air pollution it causes.

A large amount of kitchen waste in St. Vincent is disposed of in the landfills or discarded into the environment. This can cause public health hazards and diseases. Inadequate management of waste also leads to polluting surface and groundwater and can promote breeding of flies, mosquitoes, rats and other disease-bearing vectors. It also emits methane, which is a major greenhouse gas contributing to Global Warming.

Producing our own renewable cooking gas has thus many benefits.

Kitchen waste is organic material that has high calorific and nutritive properties, which are valuable for microbes that are converting the kitchen waste into methane. The efficient production of biogas can be increased by the right way of using kitchen waste.

Richmond Vale Academy has set up a small biogas digesters which can produce Biogas from kitchen waste. The way the system works is that you apply 1.5-kilo normal kitchen waste with 15 litres of water into a digester where the organic matter is decomposed in an anaerobic process that ends up producing 5 hours of methane gas which can be used for cooking. A by-product is liquid fertilizer, which can be used in the vegetable garden or on the farm.

RVA aims to set up more bio gas units over the next years; here are some of the pioneers Pat Otley, Benson Jacks and Fareeda Nanton

 

Pat Otley, Richmond

Pat is a farmer who has an organic farm close to Richmond Vale Academy. At the beginning of this project RVA organized a meeting with the workers from RVA to see who of them were interested. We held a presentation about the bio digester project serving coffee and cake.

Pat was very interested in getting a bio digester at his farm from the very beginning. We had already been to his farm a few times before so we knew the place. He has access to water, because the river is close to his farm. Also, he has a lot of organic waste and some manure to feed the bio digester.

We decided to build a plant there, because he could benefit a lot from the fertilizer and the cooking gas. We built a combination of an IBC-tank-digester and a concrete hole with a black tank inside as gas storage. Pat and his friends helped us, because it was a lot of work, especially to dig the hole and mix the concrete for the hole. After the plant was finished we came back a few times to connect the gas
storage with the stove and to make sure he has biogas. From his first gas, he made a pot of tea.

 

Fareeda Nanton, Petit Bordel

Fareeda is the head of the Markstone Community Group. When we told her about the biogas project she was instantly interested in getting one. Some in our team visited her house to check if she fulfilled the criteria. Since she's also living next to the river and she has fruit and vegetable plants in her garden, we decided that she would be one of the beneficiaries. Fareeda is living in a big house with her family, mother, and brothers, so they produce a lot of kitchen waste to feed the digester. She's getting the manure from neighbors. It took us two days to build the bio digester, which was the first one made only from IBC tanks.

 

Benson Jack, Richmond

Benson is a farmer in Richmond. We got to know him through Pat, because he was helping to build his biogas digester. He's living in a small shed at the farm, where he's cooking as well. He has no electricity and he was using charcoal for cooking. We went to his farm to visit the place, which was in our opinion ideal for a bio digester. After that we decided to build a plant at his farm, because he could benefit a lot from the gas and the fertilizer. We finished the bio digester quite fast, because it was already the second plant with IBC-tanks. Two weeks later Benson installed the stove and has been cooking ever since!


 


Ecological Model Farm

front garden2

St. Vincent relies heavily on agriculture for rural livelihood and development. However, local agricultural systems are affected by land degradation and climate change, which threaten food production. Furthermore, globalisation has forced the control of the nation’s agricultural production on to foreign food corporations. The corporations hire well-connected professional advocates, often lawyers, to argue or lobby for specific legislation in decision-making bodies; - that influence politics and public opinion. Corporate lobbyists change food standards, approve of pesticides and promote Genetically Modified seeds.

To improve our own farm and make it sustainable we carried out extensive research in St. Vincent and the research showed that:

  • Local communities need to see the implementation of new farming techniques in order to adopt them.
  • Many health, social, environmental and economic benefits of buying and eating local produce are currently being overseen by Vincentians.
  • A few decades ago the people in SVG fed themselves with a variety of organic foods. 
  • SVG imports US$40 million worth of food a year, farmers use imported chemicals and the population can no longer feed itself.

 

Creating an ecological model farm at RVA

In order to relearn and share more sustainable ways of life, students and teachers continued doing investigation activities in several farms around Saint Vincent and in other academic and audiovisual resources. They also started testing and implementing many sustainable actions. For this reason, from 2012 to 2016 the use of chemicals at RVA was gradually stopped and the agricultural practices changed dramatically.

The key outcome of this extensive research and practical actions include:

The farm has been redivided into different sections:

  • intensive vegetable garden
  • herb garden
  • forest garden
  • commercial passion fruit fields
  • pastures for sheep, horses, chicken
  • pens for pigs 

The farm produces food that contributes to 29.000 meals consumed in the school per year.

Community networks of local farmers have been established to provide RVA with food that is not being produced or grown yet. Such as staples, fish, coconut oil and specific vegetables. Imported food brought to the kitchen has been reduced items such as dairy, coffee, rice, pasta and some spices.

 

Videos: RVA Ecological Model Farm

Richmond Vale Academy Sustainability Tour

Our Forest Garden - Sustainable Tourism and Food Production

SVG TV News - Farmers going Organic

Farmers Group visiting Richmond Vale O rganic Farm

RVA Launches - Make Your Home Garden Florish Book

How to make Home Garden - Food has to be at the heart of the solution

Vegetables Production at Richmond Vale Acacemh
The intensive vegetable garden is based on Permaculture principles, which view the garden as an ecosystem and use a holistic system approach management.

We produce vegetables and greens to 29 000 meals a year and we use the following organic farming and permaculture techniques which consists of:

Soil protection and enhancement

The intensive garden at the Academy is 5000 square feet and has sandy and acidic soil. In order to grow organic vegetables, fruits and herbs it is necessary for the topsoil to have a structure that:

enables retention of water and nutrients
provides a cool and protected home for all the important microbes

To this end, many techniques are implemented daily to:

  • improve the structure of the soil
  • reduce soil compaction
  • improve water cycling and capture
  • boost plant growth

 

Composting

A main source of fertility of the intensive garden at RVA comes from it’s compost production.
Compost is made by placing layers of nitrogenous (green) organic matter - such as kitchen waste and horse manure - with carbon based (brown) organic matter - such as dried plant material and cardboard - into a pile. This layer combination provides the diet required by soil microbes to rapidly decompose the organic matter in the pile. At the end of the process, a high-quality compost is produced and provides an excellent fertiliser for hungry fruits and vegetables.
The teams have experimented with various compost systems over the years. Currently, there is a system comprising eight compost piles that are hand turned every week. These labour intensive piles, made up of fresh green leaves, dry brown leaves, kitchen waste, cardboard and horse manure; produce close to a cubic meter of compost per week.
Efforts have been made to find more labour efficient ways to produce a higher volume and better quality compost. For this reason, in the future, probiotic or efficient microbes will be introduced to the mix, to enhance the composting process.

Biocharing

Biochar is an excellent soil enhancer and carbon sequester.
It’s structure helps the soil keep its moisture and thereby its capacity to hold nutrients. Another benefit of applying biochar to the soil is carbon storage. The carbon in the biochar can stay stable for hundreds or thousand of years and thereby contributes to a meaningful carbon sequestration.
At the school, several experiments have been made to find the best way to make biochar. In 2016, a kiln was created, where the wood gas (pyrolysis gas) from the char chamber goes back to the fire underneath the char chamber, so more wood gas can be released and the charring process can go faster. Even though the insulation system still needs to be worked on, this kiln design has proven to be quite efficient. It provides the garden with a weekly production of biochar.

Mulching

Soft rotten wood, dry leaves and grass clippings are mixed with horse manure and biochar. This mixture is then applied to the top of the garden beds as mulch; to reduce soil erosion, control weeds and increase water retention. The mulch, itself in time becomes fertiliser, as it is transformed into rich humus by the soil microbes.
Every week, the mulch layer in the garden beds are maintained by the students and teachers. Making lasagna garden beds is a method that results in a rich soil with less work required. Several beds in the garden are lasagna beds. The name “lasagna bed” has nothing to do with what you’ll be growing in the garden. It refers to the method of building the garden beds, which is, essentially, adding layers of organic materials that “cooks down” over time, resulting in rich, fluffy soil that will help your plants thrive.

Complementary organic material

The lasagna bed, mulch and compost systems require a lot of organic material. For this reason, support species are grown in and around the intensive garden.
Support species are trees and veining beans that are capable of fixing nitrogen from the atmosphere.
They release nitrogen from the nodules on their roots into the soil to benefit surrounding plants. The organic matter, deriving from them, is also noted for its high nitrogen content. Therefore, these plants provide the soil with additional nitrogen value when they are pruned and their cuttings are used in mulch and compost.
Another example of support species is Vetiver Grass, which is used for erosion control as well as for mulch and material for composting.

Dispersed shade systems

Banana plants, Neem, Gliricidia and Moringa trees have been planted around the garden to provide filtered light into the garden and to hold moisture. This dispersed shade system (DSS) is an important part of the garden as it lowers the ambient temperature in the understory, creating an environment more conducive to the planting of vegetables; particularly during the hot dry months of March and April.

Organic Fertilizers

Plants are positioned on the garden beds according to their respective plant families. In this way, by mixing plant families, the nutrient and fertiliser requirements of the diverse plant families are naturally produced and therefore more easily met; than when growing a mono crop.
In addition, RVA students experiment with liquid fertilisers - most commonly in the form of compost tea, nettle tea, moringa tea and the liquid effluent from the biogas digester. They are applied weekly, either as a foliar spray or directly to the root of the plants.

Pest prevention and control

A Permaculture garden is an array of colors and shapes that hold a diversity of plant families and species. Some plants are specifically placed to attract beneficial insects whilst others have been planted to repel pests affecting nearby vegetables. Due to this design, the garden suffers minimal damage by pests.
When an outbreak does occur, students implement various organic pest control solutions. Neem, garlic, hot pepper and bacillus thuringus (Bt) solutions are typically applied as a liquid spray.

Polyculture

In the garden several different species are planted together in the same bed, according to their ability to coexist and benefit from each other. This biodiversity is important in sustaining the health of the intensive vegetable garden and the garden’s ecosystem. Areas with higher levels of biodiversity are able to adjust to changes in the climate and to prevent diseases. Polyculture is a more practical and economical way to grow food than monoculture.

 

DSC
DSC
DSC
DSC
DSC
DSC
DSC
DSC
DSCF
DSCN
IMG 20170122
IMG 20170527
IMG 20170801
IMG 20171024
DSC
DSC

Rebuilding our Climate Center after the volcano eruption

  • Richmond Vale Academy - March 2021

    Richmond Vale Academy - March 2021

  • Richmond Vale Academy April 2021 - After the Eruption

    Richmond Vale Academy April 2021 - After the Eruption

  • Compost production system

    Compost production system

  • Green Houses

    Green Houses

  • Nursery

    Nursery

  • Rainwater harvesting system

    Rainwater harvesting system

  • Passion Fruit Fields

    Passion Fruit Fields

  • Pig Pens with Solar pump for water

    Pig Pens with Solar pump for water

  • Horse Shelters

    Horse Shelters

  • Egg Production

    Egg Production

  • Free Range Chicken Pasture

    Free Range Chicken Pasture

  • Banana Fields

    Banana Fields

  • Workshop and Classroom Building

    Workshop and Classroom Building

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Terraces

    Terraces

  • Gym

    Gym

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Drains clogged with ash

    Drains clogged with ash

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovering the solar system

    Recovering the solar system

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Recovery efforts are ongoing

    Recovery efforts are ongoing

  • Photo from February 2021 - We will recover

    Photo from February 2021 - We will recover

  • Richmond Vale Academy - March 2021
  • Richmond Vale Academy April 2021 - After the Eruption
  • Compost production system
  • Green Houses
  • Nursery
  • Rainwater harvesting system
  • Passion Fruit Fields
  • Pig Pens with Solar pump for water
  • Horse Shelters
  • Egg Production
  • Free Range Chicken Pasture
  • Banana Fields
  • Workshop and Classroom Building
  • Recovery efforts are ongoing
  • Terraces
  • Gym
  • Recovery efforts are ongoing
  • Drains clogged with ash
  • Recovery efforts are ongoing
  • Recovering the solar system
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Recovery efforts are ongoing
  • Photo from February 2021 - We will recover

The RVA Climate Center has been severely affected by the volcanic eruptions in April 2021. The damages are devastating and the recovery process is currently estimated to two years.

The RVA Climate Center includes; Solar Energy, Bio Gas, Ecological Model Farm and Rain Water Harvesting

solar panels

Solar panels

RVA decided to have an off grid photovoltaic solar system in order to be self sufficient at all times and to remain operational in the event of a central system electricity failure due to climate change related or other disasters.

The Academy can produce (17.5 kW x 4 hours =) 70 kWh and its using about 60 kWh per day on light, pumping water and to keep food refrigerated.

A 17.5 kW system has been installed with 70 solar panels and a battery bank of 120 batteries (which can hold about 156 kWh of energy). This means that the system can produce 17.5 kW per hour, if the sun shines with all its power for one hour. However, batteries are needed because the sun doesn’t shine all day long; some hours during the day it only shines 50%, due to clouds the time of the day or year. Some hours it only shines 10%. On average the sun only shines about 4 hours with full power per day.

Solar water heaters

Less than 3% of the energy in the Caribbean comes from renewable sources. e main obstacle preventing people converting to renewable energy is nancing. In St. Vincent, there is a company that gives credit which made it economically viable for RVA to invest in solar water heaters - thus reducing its energy bill and carbon footprint.
Water heating accounts for up to 25% of the energy used in a typical household in the Caribbean.

There are 6 solar water heaters at RVA, the kitchen and most of the bathrooms have hot water sourced from solar energy. A solar water heater works with room temperature water that flows from the water tank to the solar collector.

At the collector, it is heated up and then returned to the hot water tank. Hot water is then drawn on demand from the tank to the showers and sinks at the kitchen and showers.

 Album: Solar Panels

  • solar
  • -solar-panel-rva
  • fullsizeoutput 4b
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 4b
  • -solar-panel-rva
  • -solar-panel-rva
  • solar
  • -solar-panel-rva
  • -solar-panel-rva
  • solar
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 89e
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 89e
  • solar
  • -solar-panel-rva
  • fullsizeoutput 4b
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 4b
  • -solar-panel-rva
  • -solar-panel-rva
  • solar
  • -solar-panel-rva
  • -solar-panel-rva
  • solar
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 89e
  • -solar-panel-rva
  • -solar-panel-rva
  • -solar-panel-rva
  • fullsizeoutput 89e

 

Bio Gas

front bio

Burning fossil fuels pollute the atmosphere, which leads to Global Warming and Climate Change. A way of climate change mitigation is to use renewable energy sources. There are several renewable energy sources: solar energy, wind energy, different thermal and hydro sources of energy and biogas.

Biogas is distinct from other renewable energy sources because of its characteristics of using, controlling and collecting organic waste and at the same time producing fertilizer as a by-product. Biogas does not have any geographical limitations nor does it require advanced technology for producing energy and at the same time it is very simple to use and apply.

In St. Vincent we are to a large extent dependent on fossil fuels and certainly when it comes to cooking gas. Charcoal is also used for cooking, which requires cutting down trees. Deforestation leads to a decrease in the fertility of land by soil erosion, among other negative environmental impacts. Using firewood as energy is also harmful for the health because of the smoke and the air pollution it causes.

A large amount of kitchen waste in St. Vincent is disposed of in the landfills or discarded into the environment. This can cause public health hazards and diseases. Inadequate management of waste also leads to polluting surface and groundwater and can promote breeding of flies, mosquitoes, rats and other disease-bearing vectors. It also emits methane, which is a major greenhouse gas contributing to Global Warming.

Producing our own renewable cooking gas has thus many benefits.

Kitchen waste is organic material that has high calorific and nutritive properties, which are valuable for microbes that are converting the kitchen waste into methane. The efficient production of biogas can be increased by the right way of using kitchen waste.

Richmond Vale Academy has set up a small biogas digesters which can produce Biogas from kitchen waste. The way the system works is that you apply 1.5-kilo normal kitchen waste with 15 litres of water into a digester where the organic matter is decomposed in an anaerobic process that ends up producing 5 hours of methane gas which can be used for cooking. A by-product is liquid fertilizer, which can be used in the vegetable garden or on the farm.

RVA aims to set up more bio gas units over the next years; here are some of the pioneers Pat Otley, Benson Jacks and Fareeda Nanton

 

Pat Otley, Richmond

Pat is a farmer who has an organic farm close to Richmond Vale Academy. At the beginning of this project RVA organized a meeting with the workers from RVA to see who of them were interested. We held a presentation about the bio digester project serving coffee and cake.

Pat was very interested in getting a bio digester at his farm from the very beginning. We had already been to his farm a few times before so we knew the place. He has access to water, because the river is close to his farm. Also, he has a lot of organic waste and some manure to feed the bio digester.

We decided to build a plant there, because he could benefit a lot from the fertilizer and the cooking gas. We built a combination of an IBC-tank-digester and a concrete hole with a black tank inside as gas storage. Pat and his friends helped us, because it was a lot of work, especially to dig the hole and mix the concrete for the hole. After the plant was finished we came back a few times to connect the gas
storage with the stove and to make sure he has biogas. From his first gas, he made a pot of tea.

 

Fareeda Nanton, Petit Bordel

Fareeda is the head of the Markstone Community Group. When we told her about the biogas project she was instantly interested in getting one. Some in our team visited her house to check if she fulfilled the criteria. Since she's also living next to the river and she has fruit and vegetable plants in her garden, we decided that she would be one of the beneficiaries. Fareeda is living in a big house with her family, mother, and brothers, so they produce a lot of kitchen waste to feed the digester. She's getting the manure from neighbors. It took us two days to build the bio digester, which was the first one made only from IBC tanks.

 

Benson Jack, Richmond

Benson is a farmer in Richmond. We got to know him through Pat, because he was helping to build his biogas digester. He's living in a small shed at the farm, where he's cooking as well. He has no electricity and he was using charcoal for cooking. We went to his farm to visit the place, which was in our opinion ideal for a bio digester. After that we decided to build a plant at his farm, because he could benefit a lot from the gas and the fertilizer. We finished the bio digester quite fast, because it was already the second plant with IBC-tanks. Two weeks later Benson installed the stove and has been cooking ever since!


 


Ecological Model Farm

front garden2

St. Vincent relies heavily on agriculture for rural livelihood and development. However, local agricultural systems are affected by land degradation and climate change, which threaten food production. Furthermore, globalisation has forced the control of the nation’s agricultural production on to foreign food corporations. The corporations hire well-connected professional advocates, often lawyers, to argue or lobby for specific legislation in decision-making bodies; - that influence politics and public opinion. Corporate lobbyists change food standards, approve of pesticides and promote Genetically Modified seeds.

To improve our own farm and make it sustainable we carried out extensive research in St. Vincent and the research showed that:

  • Local communities need to see the implementation of new farming techniques in order to adopt them.
  • Many health, social, environmental and economic benefits of buying and eating local produce are currently being overseen by Vincentians.
  • A few decades ago the people in SVG fed themselves with a variety of organic foods. 
  • SVG imports US$40 million worth of food a year, farmers use imported chemicals and the population can no longer feed itself.

 

Creating an ecological model farm at RVA

In order to relearn and share more sustainable ways of life, students and teachers continued doing investigation activities in several farms around Saint Vincent and in other academic and audiovisual resources. They also started testing and implementing many sustainable actions. For this reason, from 2012 to 2016 the use of chemicals at RVA was gradually stopped and the agricultural practices changed dramatically.

The key outcome of this extensive research and practical actions include:

The farm has been redivided into different sections:

  • intensive vegetable garden
  • herb garden
  • forest garden
  • commercial passion fruit fields
  • pastures for sheep, horses, chicken
  • pens for pigs 

The farm produces food that contributes to 29.000 meals consumed in the school per year.

Community networks of local farmers have been established to provide RVA with food that is not being produced or grown yet. Such as staples, fish, coconut oil and specific vegetables. Imported food brought to the kitchen has been reduced items such as dairy, coffee, rice, pasta and some spices.

 

Videos: RVA Ecological Model Farm

Richmond Vale Academy Sustainability Tour

Our Forest Garden - Sustainable Tourism and Food Production

SVG TV News - Farmers going Organic

Farmers Group visiting Richmond Vale O rganic Farm

RVA Launches - Make Your Home Garden Florish Book

How to make Home Garden - Food has to be at the heart of the solution

Vegetables Production at Richmond Vale Acacemh
The intensive vegetable garden is based on Permaculture principles, which view the garden as an ecosystem and use a holistic system approach management.

We produce vegetables and greens to 29 000 meals a year and we use the following organic farming and permaculture techniques which consists of:

Soil protection and enhancement

The intensive garden at the Academy is 5000 square feet and has sandy and acidic soil. In order to grow organic vegetables, fruits and herbs it is necessary for the topsoil to have a structure that:

enables retention of water and nutrients
provides a cool and protected home for all the important microbes

To this end, many techniques are implemented daily to:

  • improve the structure of the soil
  • reduce soil compaction
  • improve water cycling and capture
  • boost plant growth

 

Composting

A main source of fertility of the intensive garden at RVA comes from it’s compost production.
Compost is made by placing layers of nitrogenous (green) organic matter - such as kitchen waste and horse manure - with carbon based (brown) organic matter - such as dried plant material and cardboard - into a pile. This layer combination provides the diet required by soil microbes to rapidly decompose the organic matter in the pile. At the end of the process, a high-quality compost is produced and provides an excellent fertiliser for hungry fruits and vegetables.
The teams have experimented with various compost systems over the years. Currently, there is a system comprising eight compost piles that are hand turned every week. These labour intensive piles, made up of fresh green leaves, dry brown leaves, kitchen waste, cardboard and horse manure; produce close to a cubic meter of compost per week.
Efforts have been made to find more labour efficient ways to produce a higher volume and better quality compost. For this reason, in the future, probiotic or efficient microbes will be introduced to the mix, to enhance the composting process.

Biocharing

Biochar is an excellent soil enhancer and carbon sequester.
It’s structure helps the soil keep its moisture and thereby its capacity to hold nutrients. Another benefit of applying biochar to the soil is carbon storage. The carbon in the biochar can stay stable for hundreds or thousand of years and thereby contributes to a meaningful carbon sequestration.
At the school, several experiments have been made to find the best way to make biochar. In 2016, a kiln was created, where the wood gas (pyrolysis gas) from the char chamber goes back to the fire underneath the char chamber, so more wood gas can be released and the charring process can go faster. Even though the insulation system still needs to be worked on, this kiln design has proven to be quite efficient. It provides the garden with a weekly production of biochar.

Mulching

Soft rotten wood, dry leaves and grass clippings are mixed with horse manure and biochar. This mixture is then applied to the top of the garden beds as mulch; to reduce soil erosion, control weeds and increase water retention. The mulch, itself in time becomes fertiliser, as it is transformed into rich humus by the soil microbes.
Every week, the mulch layer in the garden beds are maintained by the students and teachers. Making lasagna garden beds is a method that results in a rich soil with less work required. Several beds in the garden are lasagna beds. The name “lasagna bed” has nothing to do with what you’ll be growing in the garden. It refers to the method of building the garden beds, which is, essentially, adding layers of organic materials that “cooks down” over time, resulting in rich, fluffy soil that will help your plants thrive.

Complementary organic material

The lasagna bed, mulch and compost systems require a lot of organic material. For this reason, support species are grown in and around the intensive garden.
Support species are trees and veining beans that are capable of fixing nitrogen from the atmosphere.
They release nitrogen from the nodules on their roots into the soil to benefit surrounding plants. The organic matter, deriving from them, is also noted for its high nitrogen content. Therefore, these plants provide the soil with additional nitrogen value when they are pruned and their cuttings are used in mulch and compost.
Another example of support species is Vetiver Grass, which is used for erosion control as well as for mulch and material for composting.

Dispersed shade systems

Banana plants, Neem, Gliricidia and Moringa trees have been planted around the garden to provide filtered light into the garden and to hold moisture. This dispersed shade system (DSS) is an important part of the garden as it lowers the ambient temperature in the understory, creating an environment more conducive to the planting of vegetables; particularly during the hot dry months of March and April.

Organic Fertilizers

Plants are positioned on the garden beds according to their respective plant families. In this way, by mixing plant families, the nutrient and fertiliser requirements of the diverse plant families are naturally produced and therefore more easily met; than when growing a mono crop.
In addition, RVA students experiment with liquid fertilisers - most commonly in the form of compost tea, nettle tea, moringa tea and the liquid effluent from the biogas digester. They are applied weekly, either as a foliar spray or directly to the root of the plants.

Pest prevention and control

A Permaculture garden is an array of colors and shapes that hold a diversity of plant families and species. Some plants are specifically placed to attract beneficial insects whilst others have been planted to repel pests affecting nearby vegetables. Due to this design, the garden suffers minimal damage by pests.
When an outbreak does occur, students implement various organic pest control solutions. Neem, garlic, hot pepper and bacillus thuringus (Bt) solutions are typically applied as a liquid spray.

Polyculture

In the garden several different species are planted together in the same bed, according to their ability to coexist and benefit from each other. This biodiversity is important in sustaining the health of the intensive vegetable garden and the garden’s ecosystem. Areas with higher levels of biodiversity are able to adjust to changes in the climate and to prevent diseases. Polyculture is a more practical and economical way to grow food than monoculture.

 

DSC
DSC
DSC
DSC
DSC
DSC
DSC
DSC
DSCF
DSCN
IMG 20170122
IMG 20170527
IMG 20170801
IMG 20171024
DSC
DSC

Forest Garden

ForestGarden at Richmond Vale Academy - St. Vincent

In the Academy’s edible forest garden - fruits, nuts, vegetables, herbs and other useful herbs - are put together in various patterns that forge symbiotic relationships which mimic natural and rich ecosystems.

RVA’s two acre forest garden presently has 870 food trees and plants.

The garden has been in development during a couple of years and is becoming a beautiful, diverse and high-yield garden. Team participants and teachers are learning to design a more self-maintaining system by understanding other ecosystems better.
Canopy, shrubs, bushes, flowers, ground cover, root crops and climbing layers have been planted and some of the species currently growing in the Forest Garden are: Mango, Moringa, Banana, Fig, Coffee, Gliricidia, Guava, Lime, Moringa, three varieties of Papaya, Pomegranate, Sugar Apple, Sweetsop, Tamarind, Barbados Cherry and Golden Apple, Sour Orange, Tangerine, Cashew Nut, Carambola, Cassava, Tania, Mulberries and Pigeon Peas, Physic Nut, Marigold, Patchouli, Cowpeas, Passion fruit, Vanilla and Loofah, Lemongrass, Vetiver (Khus-Khus Grass), Sugar Cane, Tumeric, Cassava, Tania and Coconut.

 

-the-seven-layers-of-a-forest-garden
DSC
DSC
DSC
DSC
DSCN
DSCN
DSCN
DSCN
DSCN
DSCN
DSCN
IMG
IMG
IMG
IMG
IMG 20170122
IMG 20170629
IMG 20170912
IMG 20170912
IMG 20171019
IMG 20171019
IMG 20171019
IMG 20171019
IMG
IMG
IMG
IMG
IMG
IMG

Seed Producation

Seeds Production at Richmond Vale Academy - St Vincent

More than ever, it can be argued that, with an ever growing human population, biodiversity is crucial to maintaining life and the earth’s balance and temperature.

Biodiversity is the diversity of life, it’s the rich variety of life forms on our beautiful planet.

Using and storing heirloom seeds: In the nineties, the ten biggest seed companies controlled less than 30% of the market. Today, the three largest companies control more than 50% and they are also the major pesticide producers. Seeds are becoming more expensive and with fewer varieties.
From the beginning of this century, the variety of corn types has been reduced from 300 to 12 and cabbage from 540 to 28. In the same time period, 97% of the vegetable varieties that existed - around 1.900 - have become extinct and are thus impossible to recover. Genetically modified (GMO) seeds only work “once”. This means that they cannot be replanted; they are corrupted. Furthermore, most seeds used in St. Vincent are imported Hybrid seeds that also do not germinate after the first harvest.
To become self-sufficient with seeds the Academy decided to produce and store its own organic heirloom seeds.

One of the greenhouses has been designated solely for seed production and it currently has eggplant, cabbage, carrot, lettuce and beans. The seeds are stored in an “organic only” fridge and are carefully inventoried. Additionally, to bring awareness about what GMO seeds are and the reasons why the public should be concerned about using them; several information campaigns have been made in schools, community events, radio interviews and through handouts of the RVA climate newspaper.

 

DSCN
DSCN
DSCN
DSCN
DSCN
IMG
IMG
IMG
IMG
IMG
IMG
IMG
IMG
IMG
IMG
IMG
IMG
IMG

Passion Fruit

PassionFruit web

To generate income, the school grows and processes Passion fruit, on five acres of land. Once harvested, the Passion Fruit is processed into concentrated juice and is sold fresh and as pulp. Annually, 100.000 passion fruits are produced, which is made into 10.000 lbs of pulp. The Passion Fruit production employs 5 people and juice and pulp to supermarkets and hotels around St. Vincent and the Grenadines.


In 2017, the passion fruit production became chemical free.
This outcome was achieved by removing the need to use herbicides and chemical fertilizers between the passion rows. Now, a weed wacker is used to remove grass and weeds.
The second (and on-going challenge) is ensuring the farm’s movement from a mono-cultural enterprise to a multicultural one by introducing alternative and compatible fruit crops to grow in between the passion fruit.

 

10154557258806533 5351052979875157799 n
IMG
IMG

Banana

Banana Fields at Richmond Vale Academy St. Vincent

In 2015, the use of herbicides and pesticides on the bananas stopped. The acres with chemical crops were cut down and relocated to an acre organic banana experimental area. This field is now mixed with gliricidia trees, which are regularly pruned to produce mulch. The small field is already producing beautiful bunches of bananas.

The next phase of this experiment is to add cacao trees and vanilla so the field has more biodiversity and the school can benefit from these products as well.

 

Animals

Egg production

We have chicken for egg production, sheep and pigs for meat production. The two hundred chickens live in a one acre free range system with several pastures to feed on between meals of imported chicken feed. 

The pig production is in the forest garden and the pigs are mainly fed kitchen waste and various fruits and greens from the forest garden.

In July one male and four female sheep moved into the old banana field that has by now been transformed into 4 separate areas. The sheep will eat the organic grass on the field. Pigs and sheep are slaughtered on site and the production is aimed at providing the school with sustainable mostly organic, locally produced protein.

The school is in the process of utilizing the chicken, sheep and pig manure more efficiently with a compost system that provides the passion fruit fields with organic matter and an excellent growing medium for the tree nursery.

Furthermore, as some of the animals are still dependent on imported feed, explorations are being made on how to produce own chicken feed.

At the Garden Farm we also have seven horses that are used for lessons, leisure and compost production. The horses live in a free range natural horse management system with a partly Silvopastural system which is perhaps the oldest agroforestry system used in the temperate regions of the world.

Silvopastoral systems are characterized by integrating trees with forage and livestock production. Such systems have the potential to increase agricultural production in the long term.

 

 


Water Security

front watersecurity

Water harvesting

Rainwater

An irrigation system to water the vegetables and collect rainwater has been placed outside of the intensive garden. The system collects water from the roofs of the Academy and stores it in a 150.000 litre capacity pool. There are a few million fish (guppies) and tilapia in the pool to control the breeding of mosquitoes.

Greywater

In collaboration with the faculty of Environmental Engineering of the Colombian university Manuela Beltran; a greywater system has also being built to collect and recycle water from showers and washing machines. The water is collected in four 1.000 gallon tanks and will be processed through the system so it can be reused in the intensive garden.

Album: Water Havesting Pool

  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG
  • IMG

Pin it